Double Angle Identities

These notes are intended as a companion to section 7.6 (p. $652-657$) in your workbook. You should also read the section for more complete explanations and additional examples.

Double Angle Identities

Use $\sin (\alpha+\beta)=\sin \alpha \cdot \cos \beta+\cos \alpha \cdot \sin \beta$ to prove the identity below.

$$
\sin 2 \theta=2 \sin \theta \cdot \cos \theta
$$

This is known as a double-angle identity. There are similar identities involving cosine and tangent:

$$
\cos 2 \theta=\cos ^{2} \theta-\sin ^{2} \theta
$$

$$
\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}
$$

Note: $\cos 2 \theta$ can also be written as

$$
\cos 2 \theta=2 \cos ^{2} \theta-1
$$

$$
\cos 2 \theta=1-2 \sin ^{2} \theta
$$

Example 1 (sidebar p. 654)

Given angle θ is in standard position with its terminal arm in Quadrant 4 and $\cos \theta=\frac{2}{5}$, determine the exact value of each trigonometric ratio.
a) $\sin 2 \theta$
b) $\cos 2 \theta$

Example 2 (sidebar p. 655)

Write each expression as a single trigonometric ratio, then evaluate where possible.
a) $\cos ^{2}\left(\frac{\pi}{4}\right)-\sin ^{2}\left(\frac{\pi}{4}\right)$
b) $\frac{2 \tan \frac{\pi}{6}}{\tan ^{2}\left(\frac{\pi}{6}\right)-1}$
c) $2 \sin \frac{\pi}{12} \cdot \cos \frac{\pi}{12}$

Example 3 (sidebar p. 656)
Prove each identity.
a) $\cot \theta=\frac{\cos 2 \theta+1}{\sin 2 \theta}$
b) $\cot \theta \cdot \csc 2 \theta=\frac{1}{2 \sin ^{2} \theta}$

Example 4 (sidebar p. 657)
Solve the equation $\frac{1}{2} \sin 2 x-\cos ^{2} x=0$ over the domain $0 \leq x<2 \pi$.

Homework: $\# 4-6,9-15,17$ in the exercises (p. $658-665$). Answers on p. 666.

